
Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Models of Point Neuronal Dynamics -
Python Implementation

Dor Pascal
May 30, 2024

Abstract
This document presents a comprehensive analysis of three prominent neuron models: the Leaky
Integrate-and-Fire (LIF), the Izhikevich, and the Hodgkin-Huxley (HH) models. The analysis
encompasses F-I curves, V-T curves, and predictions of the time to the first spike.

This work was completed as part of the M.Sc. course “Brain-Inspired Computing Architectures” at
the Open University of Israel, 2024b, and awarded a perfect score of 100/100. The implementation
is in Python, utilizing the numpy and matplotlib libraries.

1

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Contents
The Leaky Integrate-and-Fire (LIF) Model . 3

a. F-I Curves for 3 Different Values of 𝜏 . 3
b. V-T Curves for 3 Different Values of vTh . 6
c. Solving the Differential Equation to predict the time of the first spike 7

The Izhikevich Model . 9
a. The Izhikevich Model Neurons Types . 9
b. Analysis of the Neuron Types . 9

The Hodgkin-Huxley (HH) Model . 17
a. Equilibrium Potential Meaning and Values . 17
b. V-T Curves for Different Values . 18
Observations on the Data . 19

Code Snippets . 21
Code for the F-I Curves . 21
Code for the V-T Curves . 22
Code for the time prediction . 24
Code for the Izhikevich Model . 25
Code for the HH Curves . 27

List of Figures
1 F-I Curves for 3 Different Values of 𝜏 (Time Constant) 3
2 V-T Curves for 3 Different Values of vTh . 6
3 Implementation of the 8 Neuron Types as described in the Izhikevich, 2003 paper . . 9
4 Regular Spiking (RS) . 10
5 Intrinsic Bursting (IB) . 11
6 Chattering (CH) . 12
7 Fast Spiking (FS) . 13
8 Thalamo-Cortical (TC) . 14
9 TC2 (Thalamo-Cortical 2) . 14
10 Resonator (RZ) . 15
11 Low-Threshold Spiking (LTS) . 16
12 V-T Curves for Different Values of 𝐸Na, 𝐸K, and 𝐸leak 18

2

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

The Leaky Integrate-and-Fire (LIF) Model
The Leaky Integrate-and-Fire (LIF) model is a simple mathematical model used to describe the
behavior of a neuron. The model consists of a membrane potential that integrates incoming currents
and spikes when it reaches a neuron. The membrane potential then resets to a resting value and
enters a refractory period before it can spike again.

a. F-I Curves for 3 Different Values of 𝜏

Figure 1: F-I Curves for 3 Different Values of 𝜏 (Time Constant)

See the implementation of the F-I Curves in the code linked here. This code was used to generate
Figure 1.

variables:

• 𝑇 : Simulation time
• 𝑑𝑡: Simulation time interval
• 𝑡𝑖𝑛𝑖𝑡: Stimulus init time
• 𝑣𝑟𝑒𝑠𝑡: Resting potential
• 𝑅𝑚: Membrane Resistance
• 𝐶𝑚: Capacitance
• 𝜏𝑟𝑒𝑓 : Refractory Period
• 𝑣𝑡ℎ: Spike threshold
• 𝐼 : Current stimulus
• 𝑣𝑠𝑝𝑖𝑘𝑒: Spike voltage

3

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

• 𝜏𝑚: Time constant

Equations:

• 𝑉𝑚(𝑡) = 𝑉𝑚(𝑡 − 1) + 𝑑𝑡
𝜏𝑚

(−𝑉𝑚(𝑡 − 1) + 𝑅𝑚𝐼)
• 𝜏𝑚 = 𝑅𝑚𝐶𝑚

• 𝑠𝑝𝑖𝑘𝑒(𝑡) = {1 if 𝑉𝑚(𝑡) ≥ 𝑣𝑡ℎ
0 otherwise

Analysis: The figure shows the F-I curve for the LIF model testing different values of the time
constant 𝜏 . 𝜏 represents the contant elemnts (resistance and capacitance) of the membrane. The
time constant 𝜏 (unit of time) is the time it takes for the membrane potential to reach 63% of the
final value.

To generate the F-I curves, I used 100 different values of the current stimulus 𝐼(𝑡) ranging from 0
to 1.5 𝑚𝐴. The F-I curve for 𝜏 = 0.001 has the highest firing rate, while the F-I curve for 𝜏 = 1
has the lowest firing rate.

As can be seen, the higher the value of 𝜏 , the lower the firing rate of the neuron for the same
current stimulus. The F-I curve for 𝜏 = 1 Is the lowest, while the F-I curve for 𝜏 = 0.001 Is the
highest. This is because the membrane potential reaches the threshold value vTh very quickly for
𝜏 = 0.001, which results in a very high firing rate. For 𝜏 = 1, the membrane potential reaches the
threshold value vTh very slowly, which results in a very low firing rate. The F-I curve for 𝜏 = 0.01
Is in between the F-I curves for 𝜏 = 1 and 𝜏 = 0.001.

Formally, we can put the value of 𝜏𝑚 In the equation of the membrane potential and see that the
higher the value of 𝜏𝑚, the slower the membrane potential will reach the threshold value vTh, which
will result in a lower firing rate. In term of the equations of the model, note that the membrane
potential is:

𝜏𝑚
𝑑𝑉 (𝑡)

𝑑𝑡 = −𝑉 (𝑡) + 𝑅𝑚 ∗ 𝐼(𝑡)

where:

• 𝜏 Is the time constant
• 𝑉 (𝑡) Is the membrane potential
• 𝑅𝑚 Is the membrane resistance
• 𝐼(𝑡) Is the current stimulus
• 𝑡 Is the time
• 𝑑𝑉 (𝑡)/𝑑𝑡 Is the derivative of the membrane potential

for 𝜏 = 1 we have 𝜏 = 𝑅𝑚 = 1 and the equation becomes: 𝑑𝑉 (𝑡)
𝑑𝑡 = −𝑉 (𝑡) + 𝐼(𝑡) or

𝐼(𝑡) = 𝑑𝑉 (𝑡)
𝑑𝑡 + 𝑉 (𝑡)

For 𝜏 = 0.01 we have 𝐼(𝑡) = 𝑑𝑉 (𝑡)
𝑑𝑡 + 100 ∗ 𝑉 (𝑡), and for 𝜏 = 0.001 we have 𝐼(𝑡) = 𝑑𝑉 (𝑡)

𝑑𝑡 + 1000 ∗ 𝑉 (𝑡).
Since the threshold value vTh is the same for all the F-I curves, the lower the value of 𝜏 , the
faster the membrane potential will reach the threshold value vTh, (Vm[j] >= vTh * 1e-3 as the

4

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

equation implamnted below), since the current stimulus is multiplied by a higher value of 𝜏 , which
will result in a higher firing rate.

Another result is the convergence of the F-I curves to a maximum firing rate. This is because the
neuron cannot fire more than a certain number of spikes per second. Going back to the model
equations, we can explain this with refractory period variable, which is the time it takes for the
neuron to recover after firing a spike. The refractory period was set to 1 ms in the model, which
means that the neuron cannot fire more than 1 spike per millisecond. We can see that the 0.001
curve is the highest, and it is the closest to the maximum firing rate, while the 1 curve is the lowest,
and it is the farthest from the maximum firing rate.

5

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

b. V-T Curves for 3 Different Values of vTh

Figure 2: V-T Curves for 3 Different Values of vTh

6

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

See the implementation of the V-T Curves in the code linked here. This code was used to generate
Figure 2.

Analysis: The figure shows the V-T curve for the LIF model testing different values of the threshold
voltage 𝑉𝑇 ℎ. 𝑉𝑇 ℎ Is the voltage at which the membrane potential reaches the threshold value and
the neuron fires a spike. The V-T curve for 𝑉𝑇 ℎ = −40 fires more spikes than the V-T curve for
𝑉𝑇 ℎ = 0.1, which fires more spikes than the V-T curve for 𝑉𝑇 ℎ = 40. As can be seen, the higher the
value of 𝑉𝑇 ℎ, the lower the firing rate of the neuron for the same current stimulus. This is because
it takes it more time to reach the threshold value 𝑉𝑇 ℎ, which results in a lower firing rate. I chose
a constant current stimulus to make it easier to predict the time it will take to reach the threshold
value 𝑉𝑇 ℎ.

c. Solving the Differential Equation to predict the time of the first spike

The time that will take a neuron to reach the threshold value 𝑉𝑇 ℎ can be calculated by solving the
differential equation of the membrane potential. The equation for the membrane potential as was
explained is:

𝜏𝑚
𝑑𝑉 (𝑡)

𝑑𝑡 = −𝑉 (𝑡) + 𝑅𝑚 ∗ 𝐼(𝑡)

Note: In p. 74 of the book, the equation is solved with 𝐼(𝑡) = 0, so this
becomes 𝜏𝑚

𝑑𝑉 (𝑡)
𝑑𝑡 = −𝑉 (𝑡) , which is a first-order linear differential equation.

The solution is 𝑉 (𝑡) = 𝑒−𝑡/𝜏 +𝑉 (0), where 𝑉 (0) Is the initial value of the membrane potential. The
time that will take to reach the threshold value 𝑉𝑇 ℎ is

𝑡 = −𝜏 ∗ 𝑙𝑛(𝑉𝑇 ℎ − 𝑉 (0))

I tried to chose a constant 𝐼(𝑡) to make the calculation easier. The book equation is: 𝑉 (𝑡) =
𝑒−𝑡/𝜏 + 𝑉 (0), so the time that will take to get to the first spike is: 𝑡 = −𝜏 ∗ 𝑙𝑛(𝑉𝑇 ℎ − 𝑉 (0))
However, I encountered some problems with the calculation. For examplel, the use of the stim as a
component of other variables, so setting it to 𝐼(𝑡) = 0 ruins the calculation. I solved this by taking
of a constant offset of 0.0079 from the calculated time. I believe some other minore factor might
give same results, such as the time step dt.

In conclusion, the time to reach the threshold is calculated as: >

𝑡 = −𝜏𝑚 ⋅ ln |𝑣𝑇 ℎ − (𝑣𝑅𝑒𝑠𝑡 + 𝑅𝑚 ⋅ 𝐼)| − 0.0079

Solving the equation for the following paramters to predict the time of the first spike:

• 𝑣𝑇 ℎ = −0.04 𝑚𝑉
• 𝜏𝑚 = 0.005 𝑠
• 𝑣𝑅𝑒𝑠𝑡 = −0.07 𝑚𝑉
• 𝑅𝑚 × 𝐼 = 0.2 𝑘Ω ⋅ 𝑚𝐴
• 𝑡 = −𝜏𝑚 ⋅ ln |𝑣𝑇 ℎ − (𝑣𝑅𝑒𝑠𝑡 + 𝑅𝑚 ⋅ 𝐼)| − 0.0079

Substituting the values gives the time to reach the threshold:

7

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

𝑡 = −0.005 ⋅ ln |−0.04 − (−0.07 + 0.2)| − 0.0079 = 0.0009597842 𝑠

Repeating the calculation for different parameters:

• 𝑣𝑇 ℎ = 0.0001 𝑚𝑉
• 𝜏𝑚 = 0.005 𝑠
• 𝑣𝑅𝑒𝑠𝑡 = −0.07 𝑚𝑉
• 𝑅𝑚 × 𝐼 = 0.2 𝑘Ω ⋅ 𝑚𝐴

The rsult is:

𝑡 = −0.005 ⋅ ln |0.0001 − (−0.07 + 0.2)| − 0.0079 = 0.00230495177 𝑠

Solving the equation again for the following parameters:

• 𝑣𝑇 ℎ = 0.04 𝑚𝑉
• 𝜏𝑚 = 0.005 𝑠
• 𝑣𝑅𝑒𝑠𝑡 = −0.07 𝑚𝑉
• 𝑅𝑚 × 𝐼 = 0.2 𝑘Ω ⋅ 𝑚𝐴

Substituting the values:

𝑡 = −0.005 ⋅ ln |0.04 − (−0.07 + 0.2)| − 0.0079 = 0.00413972804 𝑠

The calculated times are show a very good match to the actual times of the first spike in the V-T
curves:

Threshold Predicted Time Real Time
−40 0.000959 0.0010
0.1 0.002305 0.0023
40 0.004139 0.0041

The calculation was also tested in the code. See Code for the time prediction for the
calculation implamnted in Python.

8

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

The Izhikevich Model
a. The Izhikevich Model Neurons Types

Figure 3: Implementation of the 8 Neuron Types as described in the Izhikevich, 2003 paper

See the implementation of the Izhikevich Model in the code linked here. This code was
used to generate Figure 3.

b. Analysis of the Neuron Types

The figure shows the 8 different neuron types in the Izhikevich model. These neuron types are
classified based on the parameters 𝑎, 𝑏, 𝑐, and 𝑑.

• 𝑎: Controls the recovery time scale. Higher 𝑎 means faster recovery, increasing the firing rate.
> As can be seen below, a higher ‘a’ value means that ‘u’ recovers more quickly after a spike,
potentially leading to a higher firing rate.

• 𝑏: Determines sensitivity to membrane potential fluctuations. Higher 𝑏 Increases sensitivity
and firing rate. > The ‘b’ parameter represents the sensitivity of the recovery variable ‘u’ to
the subthreshold fluctuations of the membrane potential ‘v’. > A higher ‘b’ value means that
‘u’ is more sensitive to the fluctuations in ‘v’, which could potentially stabilize the membrane
potential and prevent it from reaching the threshold for firing an action potential, leading to
a lower firing rate.

• 𝑐: Sets the voltage reset level. Higher 𝑐 Increases the resting potential.
• 𝑑: Adjusts the after-spike reset. Higher 𝑑 results in a higher firing rate.

The model equations are:

𝑑𝑣
𝑑𝑡 = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼

𝑑𝑢
𝑑𝑡 = 𝑎(𝑏𝑣 − 𝑢)

if 𝑣 ≥ 30 then 𝑣 = 𝑐 and 𝑢 = 𝑢 + 𝑑

9

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

• Where:

– 𝑣 Is the membrane potential,
– 𝑢 Is the recovery variable,
– 𝑎 Is the time scale of the recovery variable,
– 𝑏 Is the sensitivity of the recovery variable to subthreshold fluctuations of the

membrane potential,
– 𝑐 Is the voltage reset value,
– 𝑑 Is the after-spike reset of the recovery variable,
– 𝐼 Is the current stimulus.

Figure 4: Regular Spiking (RS)

• Parameters:

– 𝑎 = 0.02
– 𝑏 = 0.2
– 𝑐 = −65
– 𝑑 = 8

Steady spiking. A high ‘d’ value means a longer recovery period after a spike, potentially
resulting in a lower firing rate. The ‘a’ and ‘b’ values determine the recovery time scale
and sensitivity to membrane potential fluctuations, respectively (see Figure 4).

10

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Figure 5: Intrinsic Bursting (IB)

• Parameters:

– 𝑎 = 0.02
– 𝑏 = 0.2
– 𝑐 = −55
– 𝑑 = 4

Fires bursts of spikes followed by periods of silence. A higher 𝑐 value could potentially
lead to a lower firing rate, as the membrane potential resets to a higher value after a
spike (see Figure 5).

11

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Figure 6: Chattering (CH)

• Parameters:

– 𝑎 = 0.02
– 𝑏 = 0.2
– 𝑐 = −50
– 𝑑 = 2

High-frequency bursts. A higher 𝑐 value could potentially lead to a lower firing rate,
as the membrane potential resets to a higher value after a spike. Sensitivity to 𝑣
fluctuations can also affect the firing rate (see Figure 6).

12

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Figure 7: Fast Spiking (FS)

• Parameters:

– 𝑎 = 0.1
– 𝑏 = 0.2
– 𝑐 = −65
– 𝑑 = 2

Very high firing rate due to a high 𝑎 value, which leads to quicker recovery after a spike.
This type of behavior is common in inhibitory interneurons (see Figure 7).

13

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Figure 8: Thalamo-Cortical (TC)

See the explanation for TC1 below (Figure 8).

Figure 9: TC2 (Thalamo-Cortical 2)

• Parameters:

– 𝑎 = 0.1
– 𝑏 = 0.26
– 𝑐 = −65

14

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

– 𝑑 = 2
Lower firing rate, especially during hyperpolarization, due to a high 𝑏 value, which
increases the sensitivity of the recovery variable to the subthreshold fluctuations of the
membrane potential (see Figure 9).

Figure 10: Resonator (RZ)

• Parameters:

– 𝑎 = 0.1
– 𝑏 = 0.26
– 𝑐 = −60
– 𝑑 = 5

Exhibits oscillatory firing patterns in response to specific stimuli. The parameters,
particularly a high 𝑑 value, contribute to a longer recovery period after a spike, which
can lead to the observed oscillatory behavior (see Figure 10).

15

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Figure 11: Low-Threshold Spiking (LTS)

• Parameters:

– 𝑎 = 0.02
– 𝑏 = 0.25
– 𝑐 = −65
– 𝑑 = 2

Burst firing with periods of silence. The higher 𝑏 value increases the sensitivity of the
recovery variable to the subthreshold fluctuations of the membrane potential, which
could potentially lead to a lower firing rate compared to RS neurons (see Figure 11).

16

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

The Hodgkin-Huxley (HH) Model
a. Equilibrium Potential Meaning and Values

The meaning of the values 𝐸Na, 𝐸K, and 𝐸leak In the Hodgkin-Huxley model, is that they represent
the equilibrium potentials for sodium, potassium, and the leak current, respectively. These values
determine the resting membrane potential and the behavior of the neuron in response to different
stimuli.

As opposed to the LIF model and the Izhikevich model described above, the HH model includes
more sophisticated ion channels and conductances that contribute to the membrane potential.
Those represent in the text book batteries (E): the sodium battery, the potassium battery, and the
leak battery - which are the equilibrium potentials for sodium, potassium, and the leak current,
respectively.

Those are constant values that determine the resting membrane potential and the behavior of the
neuron in response to different stimuli.

• 𝐸Na (Sodium Equilibrium Potential): This is the voltage at which there is no net flow
of sodium ions across the cell membrane. It is determined by the concentration gradient of
sodium ions inside and outside the cell. A high 𝐸Na means a strong driving force for sodium
ions to enter the cell when the membrane potential is less than 𝐸Na.

• 𝐸K (Potassium Equilibrium Potential): This is the voltage at which there is no net
flow of potassium ions across the cell membrane. It reflects the balance point between the
concentration gradient of potassium ions and the electrical gradient across the membrane. A
high 𝐸K means potassium ions will leave the cell when the membrane potential is greater
than 𝐸K.

• 𝐸leak (Leak Current Equilibrium Potential): This represents the equilibrium potential
considering all ions that can leak through the membrane. It combines the effects of various
ions, primarily sodium and potassium, that contribute to the resting membrane potential.

In the model equations, these equilibrium potentials are used to calculate the membrane potential
and the gating variables that control the flow of ions across the membrane. those values directly
effect the current stimulus and the membrane potential, as can be seen in the equations below:

def UpdateCellVoltage(self, stimulusCurrent, deltaTms):
self.INa = np.power(self.m.state, 3) * self.gNa * \

self.h.state * (self.Vm - self.ENa)
self.IK = np.power(self.n.state, 4) * self.gK * (self.Vm - self.EK)
self.ILeak = self.gLeak * (self.Vm - self.ELeak)
self.Isum = stimulusCurrent - self.INa - self.IK - self.ILeak
self.Vm += deltaTms * self.Isum / self.Cm

Mathematical equations for the HH model are:

𝐼 = 𝐶𝑚
𝑑𝑉 (𝑡)

𝑑𝑡 = 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾) + 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) + 𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘) + 𝐼𝑠𝑡𝑖𝑚

Note: In the text book the notation 𝑔𝑙 Is used for the leak conductance, but
I used 𝑔𝑙𝑒𝑎𝑘 for consistency with the other conductances.

In the next section I will see how changings those values will effect the membrane potential.

17

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

b. V-T Curves for Different Values

I will examin the V-T curves for different values of 𝐸Na, 𝐸K, and 𝐸leak.

Figure 12: V-T Curves for Different Values of 𝐸Na, 𝐸K, and 𝐸leak

See the implementation of the HH Curves in the code linked here. This code was used to generate
Figure 12.

Analysis:

The graph includes three V-T curves for the Hodgkin-Huxley model with different values of the
equilibrium potentials for sodium, potassium, and the leak current:

Description 𝐸Na 𝐸K 𝐸leak

Model 1 (Green) 115 mV −12 mV 10.6 mV
Model 2 (Yellow) 120 mV −10 mV 12 mV
Model 3 (Purple) 110 mV −14 mV 8 mV

• Model 1 (Green): This model has a moderate equilibrium potential for sodium (115 mV),
a low equilibrium potential for potassium (−12 mV), and a moderate equilibrium potential
for the leak current (10.6 mV). The membrane potential shows four distinct action potentials,
with each peak reaching around 100 mV. The rapid rise and fall of the membrane potential in-
dicate the dynamics of the sodium and potassium ion channels influenced by these equilibrium
potentials.

• Model 2 (Yellow): This model has a high equilibrium potential for sodium (120 mV), a
higher equilibrium potential for potassium (−10 mV), and a slightly higher equilibrium po-
tential for the leak current (12 mV). The membrane potential shows four action potentials,

18

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

similar to Model 1, but with peaks slightly higher and occurring at similar intervals but
sooner. This reflects a strong driving force for sodium ions to enter and potassium ions to
leave the cell, leading to a rapid depolarization and repolarization phase.

• Model 3 (Purple): This model has a lower equilibrium potential for sodium (110 mV), a
lower equilibrium potential for potassium (−14 mV), and the lowest equilibrium potential
for the leak current (8 mV). The membrane potential shows four action potentials (the 4th
is cutten), with slightly lower peaks and a more gradual repolarization phase compared to
Models 1 and 2. The weaker driving force for sodium and potassium ions results in a slower
rate of depolarization and repolarization.

Analysis of V-T Curves According to the Model Equations:

We can explain the differences in the V-T curves based on the model equations and the equilibrium
potentials:

1. Membrane Potential - Strong Impact of 𝐸Na

• The membrane potential 𝑉𝑚Varies significantly across different models and time points.
• Higher 𝐸NaValues result in higher peaks in 𝑉𝑚, indicating stronger depolarization.
• This is the direct result of the function:

𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡 = 𝑔K𝑛4(𝑉𝑚 − 𝐸K) + 𝑔Na𝑚3ℎ(𝑉𝑚 − 𝐸Na) + 𝑔leak(𝑉𝑚 − 𝐸leak) + 𝐼stim

where the equilibrium potentials directly affect the current stimulus and the membrane
potential.

2. Potassium Current (𝐼K) - Impact of 𝐸K

• The driving force for potassium is 𝑉𝑚 − 𝐸K. A more negative 𝐸K Increases the driving
force when $V_m $ Is positive, leading to a stronger outward potassium current.

• This stronger outward potassium current helps repolarize the membrane potential after
an action potential. In the data provided, Model 3 with 𝐸K = −14 mV shows a more
gradual repolarization phase compared to Models 1 and 2.

3. Leak Current (𝐼leak) - Impact of 𝐸leak

• The driving force for the leak current is (𝑉𝑚 −𝐸leak). Variations in 𝐸leak affect the magni-
tude of the leak current, which contributes to the stabilization of the resting membrane
potential.

• A lower 𝐸leak results in a smaller driving force and thus a smaller leak current, leading
to a more stable and less variable membrane potential. In the data provided, Model 3
with 𝐸leak = 8 mV shows a slightly lower and more stable membrane potential compared
to the other models.

Observations on the Data

The following data was recorded at times the membrane potential curve changed its direction,
meaning it reached a peak or a trough:

19

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Model
Time
(ms)

𝑉𝑚
(mV)

𝐼Na
(mA) 𝐼K (mA)

𝐼leak
(mA) m n h

2 2.0 111.23 -233.89 230.70 30.02 0.8768 0.4787 0.3646
1 2.2 105.94 -266.02 257.93 28.76 0.9082 0.4959 0.3471
3 2.45 100.96 -241.46 232.02 28.02 0.8754 0.4861 0.3482
2 16.35 100.66 -400.94 396.67 26.78 0.9146 0.5610 0.2333
1 17.1 97.18 -374.28 365.22 26.08 0.9022 0.5517 0.2431
3 18.7 91.79 -377.96 378.90 25.38 0.9170 0.5605 0.2349
2 30.35 99.37 -422.08 431.05 26.59 0.9362 0.5735 0.2215
1 31.75 96.38 -386.73 386.86 25.98 0.9182 0.5601 0.2338
3 34.75 91.81 -365.47 354.62 25.21 0.8950 0.5521 0.2363

20

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Code Snippets
Code for the F-I Curves

Settings the parameters and the time array:

F-I Curve for the LIF model testing different tau values
tau_m_values = [0.001, 0.01 ,1.0] # Time constant

F = []
I = np.arange(0, 1.5, 0.01) # Current stimulus [mA]

Calculating the Firing Rate:

for tau_m in tau_m_values:
f = [] # Firing rate
for i in I:

Vm = np.ones(len(time)) * vRest * 1e-3
t_init = 0
spikes = []
stim = i * 1e-3 * signal.triang(len(time))
for j, t in enumerate(time[:-1]):

if t > t_init:
uinf = vRest * 1e-3 + Rm * 1e3 * stim[j]
Vm[j + 1] = uinf + (Vm[j] - uinf) * np.exp(-dt * 1e-3 / tau_m)
print(Vm[j + 1])
if Vm[j] >= vTh * 1e-3:

spikes.append(t * 1e3)
Vm[j] = vSpike * 1e-3
t_init = t + tau_ref * 1e-3

f.append(len(spikes) / T)
F.append(f)

Plotting the F-I curves:

#plot 3 F-I curves
plt.figure(figsize=(10, 5))
plt.title("F-I Curve", fontsize=15)
plt.ylabel("Firing Rate (Hz)", fontsize=15)
plt.xlabel("Current Stimulus (mA)", fontsize=15)
for i, f in enumerate(F):

plt.plot(I, f, linewidth=5, label=f"$\\tau$ = {tau_m_values[i]}")
plt.legend()
plt.savefig("FI_curve.png")
plt.show()

21

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Code for the V-T Curves

Settings the parameters and the time array:

3 V-T curves for the LIF model testing different threshold values
thresholds = [-40.0, 0.1, 40.0] # Threshold values in [V
other parameters...

Calculating the V-T curves, note that inside the loop the equation is solved for the first spike (to
test the prediction):

fig, axs = plt.subplots(len(thresholds), 1, figsize=(10, 5*len(thresholds)))

for idx, vTh in enumerate(thresholds):
Vm = np.ones(len(time)) * vRest * 1e-3
t_init = 0
spikes = []
stim = I * 1e-3 * np.ones(len(time))
firt_spike = True

print(f'Predictedion: {-tau_m * np.log(abs(vTh* 1e-3 - /
(vRest * 1e-3 + Rm * 1e3 * stim[1]))) - 0.008:.5}')

for j, t in enumerate(time[:-1]):
if t > t_init:

uinf = vRest * 1e-3 + Rm * 1e3 * stim[j]
Vm[j + 1] = uinf + (Vm[j] - uinf) * np.exp(-dt * 1e-3 / tau_m)
if Vm[j] >= vTh * 1e-3:

if firt_spike:
firt_spike = False
s = -tau_m * np.log(abs(Vm[j+1] - uinf)) - 0.008
print(f'firt_spike at t: {t}')
print(f'Calculated equaton with Vm[j+1]:{s:.5}')
print('-' * 50)

spikes.append(t * 1e3)
Vm[j] = vSpike * 1e-3
t_init = t + tau_ref * 1e-3

axs[idx].set_title(f"V-T Curve ($V_{{Th}}$ = {vTh} mV)", fontsize=15)
axs[idx].set_ylabel("Membrane Potential (mV)", fontsize=15)
axs[idx].set_xlabel("Time (msec)", fontsize=15)
axs[idx].plot(time * 1e3, Vm * 1e3, linewidth=5, label="Vm")
axs[idx].plot(

time * 1e3,
100 / max(stim) * stim,
label="Stimuli (Scaled)",
color="sandybrown",
linewidth=2,

)
axs[idx].set_ylim([-75, 100])

22

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

axs[idx].axvline(x=spikes[0], c="red", label="Spike")
for s in spikes[1:]:

axs[idx].axvline(x=s, c="red")
axs[idx].axhline(y=vTh, c="black", label="Threshold", linestyle="--")
axs[idx].legend()

plt.tight_layout()
plt.savefig("VT_curves.png")
plt.show()

23

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Code for the time prediction

Tester for the time prediction according to the calculated equation and the model equations:

OFFSET = 0.0079 # Offset to adjust the calculation

calculation = -tau_m * np.log(abs(MILI*(vTh - vRest) - Rm * I)) - OFFSET

Time to reach the threshold value VTh
print(f'Prediction: {calculation:.5f}')

24

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Code for the Izhikevich Model

A function to simulate the Izhikevich neuron model:

def izhikevich(a, b, c, d, I, T=T, dt=dt):
time = np.arange(0, T + dt, dt)
v = np.full(len(time), c *MILI) # Membrane potential [mV]
u = b * v # Membrane recovery variable
spikes = []

for t in range(len(time) - 1):
v[t+1] = v[t] + dt * (0.04 * v[t]**2 + 5 * v[t] + 140 - u[t] + I[t])
u[t+1] = u[t] + dt * a * (b * v[t] - u[t])
if v[t+1] >= 30:

v[t] = 30 # Spike peak
spikes.append(t * dt)
v[t+1] = c # Reset membrane potential
u[t+1] += d # Reset recovery variable

return time, v, I

A function to plot the V-T graph for different Izhikevich models:

def plot_izhikevich(time, v, I, title):
plt.figure(figsize=(10, 6))
plt.plot(time, v, label='Membrane Potential (v)')
plt.plot(time, I, label='Input Current (I)')
plt.xlabel('Time (ms)')
plt.ylabel('Membrane Potential (mV) / Input Current (pA)')
plt.title(title)
plt.legend()
plt.show()

Define the parameters for different neuron types:

Note: The following methods were used to plot the combined figure of the 8 neuron
types. For each separated figure, the above method was used.

Parameters for different neuron types
neuron_params = {

'RS': {'a': 0.02, 'b': 0.2, 'c': -65, 'd': 8},
'IB': {'a': 0.02, 'b': 0.2, 'c': -55, 'd': 4},
'CH': {'a': 0.02, 'b': 0.2, 'c': -50, 'd': 2},
'FS': {'a': 0.1, 'b': 0.2, 'c': -65, 'd': 2},
'TC1': {'a': 0.02, 'b': 0.25, 'c': -60, 'd': 2},
'TC2': {'a': 0.02, 'b': 0.25, 'c': -60, 'd': 2},
'RZ': {'a': 0.1, 'b': 0.26, 'c': -60, 'd': 5},
'LTS': {'a': 0.02, 'b': 0.25, 'c': -65, 'd': 2},

}

T = 500 # Simulation time [mSec]

25

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

dt = 0.2 # Time step [mSec]
time = np.arange(0, T + dt, dt)

Stimulus currents
I_rest = np.zeros(len(time))
I_hyper = np.zeros(len(time))
Z_rest = np.zeros(len(time))

Technical adjustments to get closer to the paper
...

Function to simulate Izhikevich neuron model
def izhikevich(a, b, c, d, I, T=T, dt=dt):

time = np.arange(0, T + dt, dt)
v = np.full(len(time), c *MILI) # Membrane potential [mV]
u = b * v # Membrane recovery variable
spikes = []

for t in range(len(time) - 1):
v[t+1] = v[t] + dt * (0.04 * v[t]**2 + 5 * v[t] + 140 - u[t] + I[t])
u[t+1] = u[t] + dt * a * (b * v[t] - u[t])
if v[t+1] >= 30:

v[t] = 30 # Spike peak
spikes.append(t * dt)
v[t+1] = c # Reset membrane potential
u[t+1] += d # Reset recovery variable

return time, v, I

Simulations
results = {}
results['RS'] = izhikevich(**neuron_params['RS'], I=I_rest)
results['IB'] = izhikevich(**neuron_params['IB'], I=I_rest)
results['CH'] = izhikevich(**neuron_params['CH'], I=I_rest)
results['FS'] = izhikevich(**neuron_params['FS'], I=I_rest)
results['TC1'] = izhikevich(**neuron_params['TC1'], I=I_rest)
results['TC2'] = izhikevich(**neuron_params['TC2'], I=I_hyper)
results['RZ'] = izhikevich(**neuron_params['RZ'], I=Z_rest)
results['LTS'] = izhikevich(**neuron_params['LTS'], I=I_rest)

26

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

Code for the HH Curves

A function to plot the V-T graph for different Hodgkin-Huxley models:

def plot_VT_graph(models, stimulusCurrent, totalTime, deltaTms):
time_points = np.arange(0, totalTime, deltaTms)
Vm_traces = {model_name: [] for model_name in models}

for t in time_points:
for model_name, model in models.items():

model.Iterate(stimulusCurrent, deltaTms, t)
Vm_traces[model_name].append(model.Vm)

plt.figure(figsize=(12, 8))
for model_name, Vm_trace in Vm_traces.items():

plt.plot(time_points, Vm_trace, label=model_name)

plt.title('V-T Curves for Different Hodgkin-Huxley Models')
plt.xlabel('Time (ms)')
plt.ylabel('Membrane Potential (mV)')
plt.legend()
plt.show()

Modifications to the HHModel class:

class HHModel:
#...
def __init__(self, startingVoltage=0, ENa=115, EK=-12, ELeak=10.6):

self.Vm = startingVoltage
self.ENa = ENa
self.EK = EK
self.ELeak = ELeak
#...

def UpdateCellVoltage(self, stimulusCurrent, deltaTms, t=0):
self.INa = np.power(self.m.state, 3) * self.gNa * \

self.h.state * (self.Vm - self.ENa)
self.IK = np.power(self.n.state, 4) * self.gK * (self.Vm - self.EK)
self.ILeak = self.gLeak * (self.Vm - self.ELeak)
new_Vm = self.Vm + deltaTms * \

(stimulusCurrent - self.INa - self.IK - self.ILeak) / self.Cm
if self.prev_Vm < self.Vm > new_Vm and self.pick == False:

Check for peak
self.pick = True

self.prev_Vm = self.Vm
self.Vm = new_Vm
if self.pick:

print(f'Time (ms): {t}')
print(f'Model with {self.ENa=}, {self.EK=}, {self.ELeak=}')

27

Models of Point Neuronal Dynamics - Python Implementation Dor Pascal

print(f'{self.Vm=}')
print(f'{self.INa=}, {self.IK=}, {self.ILeak=}, {self.Isum=}')
print(f'{self.m.state=}, {self.n.state=}, {self.h.state=}')
print('-' * 50)
self.pick = False

Setting up the models and plotting the V-T graph:

Define three different models with different equilibrium potentials
models = {

'Model 1': HHModel(ENa=115, EK=-12, ELeak=10.6),
'Model 2': HHModel(ENa=120, EK=-10, ELeak=12),
'Model 3': HHModel(ENa=110, EK=-14, ELeak=8)

}

Plot the V-T graph for the models
plot_VT_graph(models, stimulusCurrent=10, totalTime=50, deltaTms=0.05)

28

	The Leaky Integrate-and-Fire (LIF) Model
	a. F-I Curves for 3 Different Values of \tau
	b. V-T Curves for 3 Different Values of vTh
	c. Solving the Differential Equation to predict the time of the first spike

	The Izhikevich Model
	a. The Izhikevich Model Neurons Types
	b. Analysis of the Neuron Types

	The Hodgkin-Huxley (HH) Model
	a. Equilibrium Potential Meaning and Values
	b. V-T Curves for Different Values
	Observations on the Data

	Code Snippets
	Code for the F-I Curves
	Code for the V-T Curves
	Code for the time prediction
	Code for the Izhikevich Model
	Code for the HH Curves

